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Abstract

Background: Models of Alzheimer’s disease (AD) pathophysiology posit that amyloidosis [A] precedes and
accelerates tau pathology [T] that leads to neurodegeneration [N]. Besides this A-T-N sequence, other biomarker
sequences are possible. This current work investigates and compares the longitudinal trajectories of Alzheimer’s
ATN biomarker profiles in non-demented elderly adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort.

Methods: Based on the ATN classification system, 262 individuals were identified before dementia diagnosis and
accompanied by baseline and follow-up data of ATN biomarkers (CSF Aβ42, p-tau, and FDG-PET). We recorded the
conversion processes in ATN biomarkers during follow-up, then analyzed the possible longitudinal trajectories and
estimated the conversion rate and temporal evolution of biomarker changes. To evaluate how biomarkers changed
over time, we used linear mixed-effects models.

Results: During a 6–120-month follow-up period, there were four patterns of longitudinal changes in Alzheimer’s
ATN biomarker profiles, from all negative to positive through the course of the disease. The most common pattern
is that A pathology biomarker first emerges. As well as the classical A-T-N sequence, other “A-first,” “T-first,” and “N-
first” biomarker pathways were found. The N-A-T sequence had the fastest rate of pathological progression (mean
65.00 months), followed by A-T-N (mean 67.07 months), T-A-N (mean 68.85 months), and A-N-T sequences (mean
98.14 months).

Conclusions: Our current work presents a comprehensive analysis of longitudinal trajectories of Alzheimer’s ATN
biomarkers in non-demented elderly adults. Stratifying disease into subtypes depending on the temporal evolution
of biomarkers will benefit the early recognition and treatment.
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Background
Alzheimer’s disease (AD) has a long preclinical phase that
is characterized by accumulating pathology in the brain
[1]. This pathology leads to detectable cognitive deficits in
the preclinical stages of the disease [2]. The length of the
preclinical phase has encouraged efforts to identify in vivo
biomarkers to aid disease diagnosis and prognosis [3].
During this period, biomarkers derived from biofluids and
brain imaging vary in continuous pathological processes
that begin before the onset of symptoms [1, 4, 5].
In 2018, the National Institute on Aging and Alzhei-

mer’s Association (NIA-AA) created a research frame-
work to biologically define AD by ATN biomarkers (Aβ
deposition [A], pathologic tau [T], and neurodegenera-
tion [N]) and treat cognitive impairment as a symptom/
sign of the disease [6]. Models of AD pathophysiology
theorize a temporal sequence in which amyloidosis [A]
initiates a biological cascade, followed by pathologic tau
aggregation [T] that leads to neurodegeneration [N] [7,
8]. Besides this classic A-T-N sequence, other biomarker
sequences are possible [6]. For example, primary tauopa-
thies can evolve towards Aβ plaques before neurological
signs are seen, that is, a T-A-N sequence. A current
challenge in AD research is to identify the sequence of
pathologic changes that occurs during the preclinical
stages of disease by in vivo longitudinal study [9].
Based on this ATN classification system, our current work

is investigating and comparing the longitudinal trajectories
of Alzheimer’s ATN biomarker profiles in non-demented
elderly adults from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) using longitudinal follow-up data. The ob-
jective was to visualize which pathology biomarkers first
emerge and how they change through the course of the dis-
ease. Understanding these longitudinal changes will provide
insight into the pathophysiological progression of AD and
potentially stratify the disease into subtypes depending on
the temporal evolution of biomarkers.

Methods
Study design
The ADNI was launched in 2003 as a public-private part-
nership, led by principal investigator Michael W. Weiner,
MD, VA Medical Center and University of California-San
Francisco (http://www.loni.ucla.edu/ADNI). The ADNI
was established to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. For more
information, see http://www.adni-info.org.

Participants
All participants included in this study were enrolled in the
ADNI database (http://adni.loni.usc.edu/), a multicenter
publicly funded longitudinal study of individuals with AD,

MCI, and normal cognition (NC). ADNI participants were
followed longitudinally, with visits every 6months for the
first 2 years, followed by annual visits. At each follow-up
visit, any change to a participant’s clinical diagnosis or bio-
marker data was recorded in the ADNI database. Here, we
restricted the present analysis to MCI and NC subjects
whose biomarker data of CSF Aβ42 (labeled “A” bio-
marker), CSF p-tau (labeled “T” biomarker), and FDG-
PET (labeled “N” biomarker) were all available.
In total, 262 non-demented elderly individuals, includ-

ing 159 MCI and 103 NC, had baseline and follow-up
data of ATN biomarkers identified from the ADNI co-
hort (Table 1 and Fig. 1).

Data on CSF Aβ, p-tau, and FDG-PET
High-quality data on CSF Aβ42, p-tau, and FDG-PET were
downloaded from the ADNI dataset. Levels of Aβ42 and
p-tau were measured from all available CSF samples as
previously described [10]. Briefly, Aβ42 and p-tau were
measured using the multiplex xMAP Luminex platform
(Luminex Corporation, Austin, TX) with Innogenetics
(INNO-BIA AlzBio3; Ghent, Belgium) immunoassay kit-
based research-use only reagents containing 4D7A3
monoclonal antibody for Aβ42, and AT270 monoclonal
antibody for p-tau. All CSF biomarker assays were per-
formed in duplicate and averaged.
The neuroimaging data of cerebral metabolic rate for

glucose (CMRgl) on FDG-PET was also downloaded from
the ADNI dataset. A detailed description of FDG-PET
image acquisition and processing can be found at http://
adni.loni.usc.edu/data-samples/pet/. The mean FDG up-
take was averaged over 5 pre-defined regions of interest
(metaROIs) that are sensitive to AD-related changes in
metabolism, including right and left angular gyri, right
and left inferior temporal regions, and bilateral posterior
cingulate. PET images were spatially normalized in statis-
tical parametric mapping (SPM) to the MNI PET tem-
plate. We extracted the mean counts from the 5
metaROIs for each subject’s FDG scans at each time point,
computing the intensity values with SPM subroutines.
Finally, we intensity-normalized each metaROI mean by
dividing it by pons/vermis reference region mean. The
changes of CMRgl on FDG-PET for longitudinal analysis
were observed.

Table 1 Demographic characteristics of study subjects

Characteristics NC MCI Total

Number 103 159 262

Age (mean years ± SD) 74.98 ± 5.92 71.75 ± 7.46 73.02 ± 7.07

Gender (male/female) 59/44 91/68 150/112

Education (mean years ± SD) 16.41 ± 2.81 16.13 ± 2.54 16.24 ± 2.65

APOE ε4 (carrier/non-carrier) 29/74 78/81 107/155

APOE apolipoprotein E, MCI mild cognitive impairment, NC normal cognition
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ATN classification and data collection
The cutoff values for denoting normal (negative) versus
abnormal (positive) A/T/N biomarker, obtained from
the extant literature [10, 11], might serve as signatures
for the presence of A/T/N pathology. The cutoff con-
centrations of CSF Aβ42 and p-tau were 192 pg/ml and
23 pg/ml, respectively, while the FDG cutoff value used
in this study was 1.21. Applying these cutoff values to
the ATN biomarkers resulted in eight possible ATN bio-
marker profiles at baseline: A-T-N-, A+T-N-, A-T+N-,
A-T-N+, A+T+N-, A+T-N+, A-T+N+, and A+T+N+.
Those with ATN all positive (A+T+N+) at baseline were
excluded from the study. Follow-up data for the other
seven ATN biomarker profiles were collected (Fig. 1).
We recorded the process of the first conversion in one
of the three ATN biomarkers from negative to positive
during follow-up. We then analyzed the possible longitu-
dinal patterns of biomarker profiles and estimated the
conversion rate and temporal evolution of biomarker
changes in different patterns throughout the course of
the disease. It is worth noting that, for the present study,
we did not include borderline cases (± 5% from the ori-
ginal cutoffs for ATN biomarkers) to avoid drawing con-
clusions based on borderline cases. Detailed information
can be found in our previously published article [12].

Statistical analysis
Demographic characteristics of our individuals are pre-
sented using means and standard deviations (SD) for
continuous variables and proportions for categorical var-
iables. To evaluate how biomarkers changed over time,
we used linear mixed-effects models. The model allowed
an individual’s change rate of biomarker profiles to de-
pend on his or her pathological stage by fitting a model
with an interaction between time and “ATN” profiles.
Subject-specific intercepts and slopes were included in
random-effects models that allow for heterogeneity
among subjects accounting for repeated measures on the
same subject. Age, gender, educational years, and APOE
ε4 genotype were also included as covariates. Estimates
and 95% confidence intervals (CIs) were calculated using
the parametric bootstrap method in the arm package
with 10,000 replicates. The baseline estimated time
(months) to each biomarker change was calculated by
the absolute value of the difference between the values
in individuals with follow-up data, but without this bio-
marker change, and the cutoff values for defining posi-
tive/negative individuals of this biomarker divided by the
estimated rate of change. The total conversion time for
all biomarker changes in different patterns was obtained
by summing the conversion time of each of the three

Fig. 1 Study demographics and ATN biomarker profiles at baseline and follow-up. The analyses included 262 non-demented elderly individuals,
with baseline and follow-up data of CSF Aβ42, p-tau, and FDG-PET metabolism, with seven different ATN biomarker profiles based on ATN
classification. During the follow-up period of 6 to 120months, the detailed process of the changes in ATN biomarker profiles in these individuals
from the ADNI cohort was shown
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ATN biomarkers. All statistical analyses were conducted
using the R statistical software (www.R-project.org).

Results
The analyses included 262 non-demented elderly indi-
viduals (Table 1), with baseline and follow-up data of
CSF Aβ42, p-tau, and FDG-PET metabolism, with seven
different initial ATN biomarker profiles (Fig. 1). The
follow-up time ranged from 6 to 120 months, and the
median follow-up time was 24months. The number of
individuals who had follow-up data over 60 months was
extremely small. Figure 1 shows the detailed process of
the changes in ATN biomarker profiles.
During the follow-up period of 6 to 120months, there

were four sequences in Alzheimer’s ATN biomarker pro-
files, from all negative to all positive biomarkers through
disease progression (Fig. 2), specifically A-T-N, A-N-T, T-
A-N, and N-A-T biomarker sequences. The overall con-
version rates of these four sequences were 1.28%, 1.14%,
0.91%, and 0.76%, respectively, on the basis of the current
follow-up data, while 46.34% of individuals did not have
any ATN biomarker changes. The most common se-
quence was that the A biomarker first emerged, in line
with the classic amyloid cascade hypothesis.
It is noteworthy that the T biomarker had a higher

conversion rate in the first stage (29.27%), but the occur-
rence of the T-A-N biomarker sequence was only 0.91%
in the process of total conversion. This is because the
rate of subsequent conversion rate in A biomarker or N
biomarker was low at 10.42% and 14.58%, respectively.
Meanwhile, if the N biomarker appeared in the second
stage, then there was no A biomarker change in the final
stage of conversion, that is, a T-N sequence. Similarly, if

the T biomarker appeared in a subsequent stage of the
“N-first” biomarker pathway, then the A biomarker did
not change, that is, a N-T sequence.
The “A-first” biomarker pathway had two different evo-

lutions: A-T-N and A-N-T. Although each is similar in
the total conversion rate between these two patterns
(1.28% and 1.14%, respectively), there was a significant dif-
ference in the total time for all the changes (67.07 and
98.14months, respectively). Figure 3 depicts the model re-
sults of the baseline estimated months to each biomarker
change, reflecting the temporal evolution of pathology
over the course of the disease, and the detailed time points
for each biomarker change. Interestingly, our results show
that the N-A-T sequence had the fastest rate of patho-
logical progression (mean 65.00months), followed by the
A-T-N sequence (mean 67.07months), then the T-A-N
sequence (mean 68.85months), and finally, the A-N-T se-
quence (mean 98.14months).

Discussion
AD develops following a long pre-clinical phase with ab-
normal CSF and imaging biomarkers [1]. The ATN bio-
marker system is an unbiased system for grouping
biomarkers and classifying research participants by the
pathologic process each measures, thus provides a flex-
ible platform to generate or test hypotheses concerning
different pathologic processes and provides prognostic
information of clinical change and progression [12]. Un-
derstanding the longitudinal trajectories of Alzheimer’s
ATN biomarker profiles in non-demented elderly pro-
vides insight into the pathophysiological progression of
AD and potentially stratifies the disease into subtypes
according to the temporal evolution of the biomarkers.

Fig. 2 Detailed conversion rate and temporal evolution of ATN biomarker changes in different sequences through the course of the disease. The
follow-up time ranged from 6 to 120months. Red fonts represent the conversion rate at different stages. Blue fonts represent the baseline
estimated time to each biomarker change. The overall conversion rates of different biomarker sequences were shown, on the basis of the current
follow-up data, while 46.34% of individuals did not have any ATN biomarker changes
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The primary goal of our current analysis was to find
the possible longitudinal patterns of changes in Alzhei-
mer’s ATN biomarker profiles during the course of the
disease. Our results show that there are three other lon-
gitudinal ATN biomarker pathways apart from the clas-
sical A-T-N sequence. The most common pattern is
indeed that the A pathology biomarker emerges first, in
line with the amyloid cascade hypothesis. The “amyloid
hypothesis” has continued to gain support over the last
two decades, particularly from genetic studies, and pro-
poses that amyloid is the toxic cause of neural/synaptic
damage and dementia [13]. In the current longitudinal
PET study, sequential changes from Aβ to tau to cogni-
tion were clearly shown [14].
Recently, abundant human and animal data implicate

both A and T in the primary pathogenesis of AD [15,
16]. The dual-pathway hypothesis suggests that A and T
independently arise from pathophysiological processes
that interact with pathogenic synergy [17]. The early
stage of tauopathy, made up of the hyperphosphorylated
tau, is a hallmark of several neurodegenerative disorders,
and a “T-first” biomarker profile was found in our indi-
viduals from the ADNI cohort. The T-A-N sequence of
pathological events previously proposed for late-onset
AD seems to best explain the fact that the early stage of

tauopathy might precede amyloid in some individuals
who eventually enter the Alzheimer’s continuum when
they become amyloid positive [6, 18, 19], while the T-N
and N-T sequences should be considered as non-
Alzheimer’s continuum profiles based on the 2018 NIA-
AA Research Framework [6].
In addition, many possible etiologies and proportional

mixes of etiologies (for example, cell senescence or im-
mune dysfunction) may exist for an abnormal N bio-
marker finding [20]. Although N biomarkers are not
specific for neurodegeneration due to AD [6], evidence
has appeared to support the idea that cognitive decline
and N biomarker abnormalities might precede abnormal
A biomarkers in some elderly individuals who later de-
velop AD [8, 21]. Consistent with previous work, the N-
A-T sequence was also found in our individuals from
the ADNI cohort. This pattern of longitudinal patho-
logical changes needs to be further tested in living indi-
viduals by large sample prospective studies.
The second goal of our current analysis was to show the

temporal evolution of biomarker changes through the
course of the disease. Previous studies have found that
CSF Aβ42 was unequivocally abnormal 5–10 years or more
prior to dementia diagnosis [22], while both CSF t-tau and
p-tau became progressively more abnormal as the time to

Fig. 3 Modeling longitudinal trajectories of Alzheimer’s ATN biomarkers. The model results of the baseline estimated months to each biomarker
change, reflecting the temporal evolution of pathology over the course of the disease, and the detailed time points for each biomarker change.
The N-A-T sequence had the fastest rate of pathological progression (mean 65.00 months), followed by the A-T-N (mean 67.07 months), then the
T-A-N sequence (mean 68.85 months), and finally the A-N-T sequence (mean 98.14 months)
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diagnosis of dementia decreased [23]. Our current results
are generally consistent with the above views. As can be
seen in the “A-first” biomarker sequences, the A-T-N se-
quence had a significantly faster rate of disease progres-
sion than the A-N-T sequence. It is noteworthy that the
N-A-T sequence had the fastest disease progression rate.
The N biomarker is an indicator of neurodegeneration or
neuronal injury that can result from many causes. Recent
longitudinal analyses show that, even before amyloid turns
officially positive, subthreshold accumulation correlates
with subtle memory deficits and cortical tau deposition
[24, 25]. Therefore, we speculate that Aβ may be already
accumulating in these N-positive-first, but A-negative in-
dividuals, and increased Aβ accumulation might be associ-
ated with faster disease progression.
However, despite the long pre-clinical disease window

covered by the current study, the follow-up data espe-
cially CSF data are limited because of its invasiveness.
Therefore, only small numbers of participants had longi-
tudinal data, and the majority of longitudinal partici-
pants had conversion results of biomarker changes only
once. No individual had a full conversion of biomarkers
from all negative to all positive across the follow-up
period, and our results represent sample rather than in-
dividual effects. In addition, we calculated the conver-
sion rates of each biomarker sequence similarly as
previous research [26], while 46.34% of individuals did
not have any ATN biomarker changes based on the
current follow-up data. How many individuals will
undergo further changes cannot be known, because of
increasing death rates with age and the difficulty in lon-
ger follow-ups. Anyway, a greater number of individuals
and time points, and longer follow-up time would in-
crease the feasibility of modeling and provide more sta-
tistically powerful results in the future.

Conclusions
To our knowledge, the current work presents a compre-
hensive analysis of longitudinal trajectories of Alzhei-
mer’s ATN biomarker profiles in non-demented elderly
individuals from the ADNI cohort. Except for the clas-
sical A-T-N sequence, our study has demonstrated that
three other longitudinal patterns of changes in Alzhei-
mer’s ATN biomarker profiles are also present, including
the “A-first,” “T-first,” and “N-first” biomarker pathways.
Understanding these longitudinal changes further dem-
onstrates the diversity of the pathophysiological progres-
sion of the disease. Stratifying disease into subtypes
depending on the temporal evolution of biomarkers
could benefit the early recognition and treatment of dis-
eases. Meanwhile, early targeted interventions blocking
the effect of biomarkers might alter the natural history
of the disease.
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